MOS依照其“通道”的极性不同,可分为'N"沟与‘p“沟的MOSFET,
结构
如图是典型平面N沟道增强型MOSFET的剖面图。它用一块P型硅半导体材料作衬底(图la),在其面上扩散了两个N型区(图lb),再在上面覆盖一层二氧化硅(SiO2)绝缘层(图1c),最后在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),如图1d所示。平面N沟道增强型MOSFET从图1中可以看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。一般情况下,衬底与源极在内部连接在一起。
功能
要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID
若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。VP为夹断电压(ID=0)。
耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。
N沟道MOS管(一般源极接地),只要栅源电压VgsVth(通常是0.7V左右),便可在栅极下面的P衬底形成N型沟道,将源极和漏极连在一起,成为导电通道;这时只要在漏极加上电压,便可形成电流,此时电流同时受Vgs和Vds控制;当Vgd=Vgs-Vds<Vth时,沟道在漏极夹断,管子进入饱和区,此时电流仅受Vgs控制(忽略沟道长度调制效应);当漏源电压Vds太大时,会发生源漏穿通,即漏极和源极连在一起,相当于发生了击穿,此时会产生很大的电流。当栅源电压Vgs太大时,也会发生击穿,即栅氧化层被击穿,此时管子失效。
1.n沟道mos管与p沟道mos管工作原理相似,不同之处仅在于它们形成电流的载流子性质不同,因此导致加在各极上的电压极性相反。
应用得最多的是n沟道增强型mos管
2.n沟道增强型mos管的工作原理:
本文转载自互联网,如有侵权,联系删除