虽然任何平面地图可以只用四个颜色着色,但是这个定理的应用却相当有限,因为现实中的地图常会出现飞地,即两个不连通的区域属于同一个国家的情况(例如美国的阿拉斯加州),而制作地图时我们仍会要求这两个区域被涂上同样的颜色,在这种情况下,只用四种颜色将会造成诸多不便。
实际中用四种颜色着色的地图是不多见的,而且这些地图往往最少只需要三种颜色来染色。此外,即便地图能够只用四种颜色染色,为了区分起见,也会采用更多的颜色,以提示不同地区的差别。
四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。
用数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。
四色猜想的理论基础如下:
地图上任何一个区域必将存在邻域,且又通过邻域与其他非邻域发生间接联系,可以将任何一个地图以图论图形的表示出来。假设存在一张至少需要m种着色的地图,那么决定该地图必须要用m种着色的条件有且只有一个,即该地图至少存在这样一个区域Q,与该区域相邻的所有区域必须满足m-1着色。
首先满足这个条件后,Q只能用第m种颜色,其次如果这个推论一是错误的,对于m着色地图不存在这样的区域,那么地图上任何一个区域的邻域只能满足少于m-1的着色,那么整个地图势必不需要m种颜色,这与假设相矛盾,所以这是一个充分必要条件。
假设随意取一张任意结构的至少m着色的地图M,其上满足上述条件的区域有n个,那么将图论图形中的这n个区域及其与邻域的关系线我们可以全部去掉,这样我们就将构建一个至少m着色地图M的问题转化成了一个在至少需要m-1着色地图上添加n个满足推论一条件的区域问题。
如果五着色地图存在且能构建成功,那么必然存在构建这样五着色的四着色模型图,而要存在这样的四着色模型图必然存在构建该四着色的三着色模型图,同理要存在这样的三着色模型图必然要存在构建它的二着色模型图,那么我们来构建一下五色图是否存在。
四色定理
四色地图的一个例子四色定理指出每个可以画出来的地图都可以至多用4种颜色来上色,而且没有两个相接的区域会是相同的颜色。被称为相接的两个区域是指他们共有一段边界,而不是一个点。
这一定理最初是由Francis Guthrie在1853年提出的猜想。很明显,3种颜色不会满足条件,而且也不难证明5种颜色满足条件且绰绰有余。但是,直到1977年四色猜想才最终由Kenneth Appel 和Wolfgang Haken证明。他们得到了J. Koch在算法工作上的支持。
证明方法将地图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查。这一工作由不同的程序和计算机独立的进行了复检。在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的情况。这一新证明也使用了计算机,如果由人工来检查的话是不切实际的。
四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。参见实验数学。
缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”
【四色猜想的提出】最早提出这个猜想的,是格斯里(FrancisGuthrie)。1852年,毕业于伦敦大学的格斯里来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?他和他正在读大学的弟弟决心试一试,但是稿纸已经堆了一大叠,研究工作却是没有任何进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密顿爵士请教,但直到1865年哈密顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
【四色猜想】四色定理又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理是一个著名的数学定理,通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。1976年借助电子计算机证明了四色问题,问题也终于成为定理,这是第一个借助计算机证明的定理。四色定理的本质就是在平面或者球面无法构造五个或者五个以上两两相连的区域。
四色猜想又称四色问题、四色定理,是世界近代三大数学难题之一。地图四色定理(Four color theorem)最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。
用数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。
对着个问题感兴趣的话可以参考下面两个链接,有详细的介绍
网页链接
网页链接
本文转载自互联网,如有侵权,联系删除