根号运算法则:
成立条件:a≥0,n≥2且n∈N。
成立条件:a≥0, n≥2且n∈N。
成立条件:a≥0,b0,n≥2且n∈N。
成立条件:a≥0,b0,n≥2且n∈N。
整数的除法法则
1)从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数。
2)除到被除数的哪一位,就在那一位上面写上商。
3)每次除后余下的数必须比除数小。
除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
根号的四则运算公式:√a*√b=√ab(a≥0,b≥0),√a/√b=√a/b(a≥0,b>0),如√75+√2-√8+√27=5√3+√2-2√2+3√3=8√3-√2。
根式的加减:首先将根式转化为最简根式,然后找出同类根式,类似于合并同类项进行加减。
根式运算注意事项:
1、根式相加减,先把各根式化为最简根式,再合并同类根式。
2、根式的乘除法常用乘法公式或除法公式来简化计算,运算结果一定要写成最简根式。
3、利用三角形的三边关系进行化简。利用根式的双重非负性的性质,被开方数开方出来后,等于它的绝对值。
根号计算公式是√ab=√a·√b,根号是一个数学符号。根号的意义就是用来表示对一个数或一个代数式进行开方运算的符号,对初中数学来说,根号的意义是表示算术平方根,它的性质是根号a是非负数,根号下a方等于a的绝对值,根号a的平方等于a。
平方根性质
根号即平方根性质.任何一个正数的平方根有两个,它们互为相反数,如正数a的算术平方根是x,则a的另一个平方根为﹣x,零的平方根是零,负数没有平方根,有理化根式,如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式,无理数可用有理数形式表示。
本文转载自互联网,如有侵权,联系删除