椭圆面积公式S= 圆周率*ab(其中a、b分别是椭圆的长半轴、短半轴的长)
椭圆面积公式S=圆周率 ab(其中a、b分别是椭圆的长半轴、短半轴的长).在中学数学教材中,仅在高中《平面解析几何》的习题中作为已知公式给出过,直到高等数学的定积分学习时才给出定积分推导.现用初等数学方法作两种推导,供读者参考.
定理1.若夹在两条平行直线间的两个平面图形,被平行于两条平行直线的任一直线所截,如果截得的两条线段长的比例总相等,那么这两个平面图形的面积比等于截得线段长的比 .
注:此定理相当于祖暅原理的推论,故证明从略.
方法一:设椭圆C的方程为 (ab0),辅助圆C 的方程为x2+y2=b2,且一直线L:y = m( )与两曲线相交,交点分别为M(x1 ,m)、 N(x2 ,m)及P(x3 ,m)、Q(x ,m),如图1.
由 解得 x = ,
此时,= ;
由 解得x =± ,(图1)
此时,=2 .
、当 ,即b=|m|时,交点为(0,b)或(0,-b);
、当 ,即b≠|m|时,有 .
显然 是一种特殊情况,即直线L与两曲线C、C 交于一点,此时与求椭圆C的面积无影响,故可忽略;在情况 下,即椭圆C的弦长|MN|与圆C 的弦长|PQ|比恒为定值 时,则当设椭圆C与圆C 的面积分别为S、S 时,由定理1得 = ,又圆C 的面积S =πb ,故有 S = S = πb =πab .
所以椭圆C的面积公式为 S =πab (其中a、b分别是椭圆的长半轴、短半轴的长).
椭圆面积公式:S=π(圆周率)×a×b,其中a、b分别是椭圆的长半轴,短半轴的长。
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
扩展资料
如果一条固定直线被甲乙两个封闭图形所截得的线段比都为k,那么甲面积是乙面积的k倍。
那么x^2/a^2+y^2/b^2=1 (ab0)的面积为π * a^2 * b/a=πab
因为两轴焦点在0点,所以椭圆的面积可以分为4个相等的部分,分别是+x+y、-x+y、-x-y、+x-y四个区域,所以只要求出一个象限间所夹的面积,然后再乘以4就可以得到整个椭圆的面积。
参考资料来源:百度百科-椭圆面积公式
参考资料来源:百度百科-椭圆
椭圆形面积计算公式,第一种方法是S=π×a×b,第二种方法是S=π(圆周率)×A×B/4。 扩展资料 椭圆形面积计算公式有两种方法,第一种方法是S=π×a×b,其中a、b分别是椭圆的长半轴,短半轴的长;第二种方法是S=π(圆周率)×A×B/4,其中A,B分别是椭圆的长轴和短轴的长。
椭圆面积算法如下:
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。
定理内容:
如果一条固定直线被甲乙两个封闭图形所截得的线段比都为k,那么甲面积是乙面积的k倍。
那么椭圆的面积为πab。
因为两轴焦点在0点,所以椭圆的面积可以分为4个相等的部分,分别是+x+y、-x+y、-x-y、+x-y四个区域,所以只要求出一个象限间所夹的面积,然后再乘以4就可以得到整个椭圆的面积。拣最简单的来吧,先求第一象限所夹部分的面积。
根据定积分的定义及图形的性质,我们可以把这部分图形无限分为底边在x轴上的小矩形,整个图形的面积就等于这些小矩形面积和的极限。
现在应用元素法,在图 形中任找取一点,然后再取距这点距离无限近的另一个点,这两点间的距离记做dx,然后取以dx为底边,两点分别对应的y为高,与曲线相交够成的封闭的小矩 形的面积s,显然,s=y*dx 现在求s的定积分,即大图形的面积S,S=∫[0:a]ydx 意思是求0 到 a上y关于x的定积分 步骤:(第一象限全取正,后面不做说明)。
S=∫[0:a]ydx=∫[0:a]|sqr(b^2-b^2*x^2/a^2)|dx 设 x^2/a^2=sin^2t 则 ∫[0:a]|sqr(b^2-b^2*x^2/a^2)|dx=∫[0:pi/2]b*cost d(a*sint) pi=圆周率 ∫[0:pi/2]b*cost 。d(a*sint)=∫[0:pi/2]b*a*cos^2t dt cos^2t=1-sin^2t ∫[0:pi/2]b*a*cos^2t dt =[a*b*t](0:pi/2)-∫[0:pi/2]b*a*sin^2t dt 这里需要用到一个公式:
∫[0:pi/2]f(sinx)dx=∫[0:pi/2]f(cosx)dx 证明如下 sinx=cos(pi/2-x) 设u=pi/2-x 则 ∫[0:pi/2]f(sinx)dx=∫[pi/2:0]f(cosu)d(pi/2u)=∫[0:pi/2]f(sinu)d(pi/2u)=∫[0:pi/2]f(sinu)du=∫[0:pi/2]f(sinx)dx 则∫[0:pi/2]b*a*cos^2t dt =[a*b*t](0:pi/2)-∫[0:pi/2]b*a*sin^2t dt=a*b*(pi/2)-∫[0:pi/2]b*a*cos^2t dt 那么 2*∫[0:pi/2]b*a*cos^2t dt=a*b*(pi/2) 。
椭圆面积S_c=a*b*pi 可见椭圆面积与坐标无关,所以无论椭圆位于坐标系的哪个位置,其面积都等于半长轴长乘以半短轴长乘以圆周率。
本文转载自互联网,如有侵权,联系删除